# Program for Factorial of natural number using recursion
def r_fact(n):
if n==1:
return n
else:
return n*r_fact(n-1)
#main programme
n=int(input("enter n"))
if n==0:
print("factorial is 1")
elif n<0:
print("Sorry factorial does not exist ")
else:
print("factorial is:",r_fact(n))
Output
enter n 5
('factorial is:', 120)
enter n -3
Sorry factorial does not exist
enter n 0
factorial is 1
#Program for Fibonacci series using recursion: video Click here
def fib(n1,n2,n):
if n==0:
return
res=n1+n2
print(res)
fib(n2,res,n-1)
a=0
b=1
n=int(input("How many numbers to be printed: "))
print(a)
print(b)
fib(a,b,n-2)
Output
How many numbers to be printed: 5
0
1
1
2
3
# Python Program for recursive binary search.
# Returns index of x in arr if present, else -1
def binarySearch (arr, l, r, x):
# Check base case
if r >= l:
mid = l + (r - l)/2
# If element is present at the middle itself
if arr[mid] == x:
return mid
# If element is smaller than mid, then it can only
# be present in left subarray
elif arr[mid] > x:
return binarySearch(arr, l, mid-1, x)
# Else the element can only be present in right subarray
else:
return binarySearch(arr, mid+1, r, x)
else:
#Element is not present in the array
return -1
# Test array
arr = [ 2, 3, 4, 10, 40 ]
x = 10
# Function call
result = binarySearch(arr, 0, len(arr)-1, x)
if result != -1:
print "Element is present at index %d" % result
else:
print "Element is not present in array"
def r_fact(n):
if n==1:
return n
else:
return n*r_fact(n-1)
#main programme
n=int(input("enter n"))
if n==0:
print("factorial is 1")
elif n<0:
print("Sorry factorial does not exist ")
else:
print("factorial is:",r_fact(n))
Output
enter n 5
('factorial is:', 120)
enter n -3
Sorry factorial does not exist
enter n 0
factorial is 1
#Program for Fibonacci series using recursion: video Click here
def fib(n1,n2,n):
if n==0:
return
res=n1+n2
print(res)
fib(n2,res,n-1)
a=0
b=1
n=int(input("How many numbers to be printed: "))
print(a)
print(b)
fib(a,b,n-2)
Output
How many numbers to be printed: 5
0
1
1
2
3
# Python Program for recursive binary search.
# Returns index of x in arr if present, else -1
def binarySearch (arr, l, r, x):
# Check base case
if r >= l:
mid = l + (r - l)/2
# If element is present at the middle itself
if arr[mid] == x:
return mid
# If element is smaller than mid, then it can only
# be present in left subarray
elif arr[mid] > x:
return binarySearch(arr, l, mid-1, x)
# Else the element can only be present in right subarray
else:
return binarySearch(arr, mid+1, r, x)
else:
#Element is not present in the array
return -1
# Test array
arr = [ 2, 3, 4, 10, 40 ]
x = 10
# Function call
result = binarySearch(arr, 0, len(arr)-1, x)
if result != -1:
print "Element is present at index %d" % result
else:
print "Element is not present in array"
No comments:
Post a Comment